Modern Statistics

Lecture 1 - 2/17/2025

Probability

Lecturer:Xiangyu Chang

Scribe: Yiyao Yang, Ning Cheng

Edited by: Zhihong Liu

1 Sample Space and Events

Definition 1 (Sample Space) The sample space Ω is the set of all possible outcomes of a random experiment. Elements $\omega \in \Omega$ are called sample points.

Definition 2 (Event) An event A is any subset of the sample space $(A \subseteq \Omega)$. We say event A occurs if the outcome $\omega \in A$.

Example 1 (Coin Tossing) Let's analyze different coin tossing scenarios:

- Single toss: $\Omega = \{H, T\}$
- Two tosses: $\Omega = \{HH, HT, TH, TT\}$
- Conditional case: When requiring the first toss to be heads: $\Omega_{cond} = \{HH, HT\}$

Example 2 (Infinite Case) For an infinite sequence of coin tosses:

 $\Omega = \{(\omega_1, \omega_2, \omega_3, \ldots) : \omega_i \in \{H, T\}\}$

2 Set Operations and Limits

2.1 Basic Operations

- Intersection: $A \cap B = \{\omega \in \Omega | \omega \in A \text{ and } \omega \in B\}$
- Union: $A \cup B = \{ \omega \in \Omega | \omega \in A \text{ or } \omega \in B \}$
- Complement: $A^c = \{ \omega \in \Omega | \omega \notin A \}$
- Difference: $A \setminus B = \{ \omega \in \Omega | \omega \in A , \omega \notin B \}$
- **Disjoint Sequence**: $\{A_i\}_{i=1}^n$ if $\forall i \neq j, A_i \cap A_j = \emptyset$
- Relation of Inclusion: $A \subseteq B$: $\omega \in A \implies \omega \in B$

2.2 Sequence Limits

Definition 3 (Monotone Sequences) Increasing and decreasing sequences are described as follows:

1. Increasing sequence: $A_1 \subseteq A_2 \subseteq \cdots$ with

$$\lim_{n \to \infty} A_n = \bigcup_{i=1}^{\infty} A_i$$

2. Decreasing sequence: $A_1 \supseteq A_2 \supseteq \cdots$ with

$$\lim_{n \to \infty} A_n = \bigcap_{i=1}^{\infty} A_i$$

Example 3 Consider $A_n = [0, 1/n)$ for $n \in \mathbb{N}$:

$$\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n = \{0\}$$

This demonstrates how infinite intersections can collapse to single points.

3 Probability

Definition 4 (Probability Axioms) A probability measure $P : \mathcal{F} \to [0, 1]$ satisfies:

- 1. Non-negativity: $P(A) \ge 0 \ \forall A \subseteq \Omega$
- 2. Normalization: $P(\Omega) = 1$
- 3. Countable additivity: For disjoint $\{A_i\}_{i=1}^n$:

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

3.1 Key Properties

Property 1 $P(\emptyset) = 0$

Property 2 $P(A^c) + P(A) = 1$

Property 3 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Proof 3.1 (Proof of Property 3) Decompose using disjoint sets:

$$P(A \cup B) = P((A \setminus B) \cup (A \cap B) \cup (B \setminus A))$$

= $P(A \setminus B) + P(A \cap B) + P(B \setminus A)$
= $P((A \setminus B) \cup (B \setminus A)) + P(B \setminus A) + P(A \cap B) - P(A \cap B)$
= $P(A) + P(B) - P(A \cup B)$

3.2 Independence

Definition 5 (Independent Events) Events A and B are independent $(A \perp B)$ if:

$$P(A \cap B) = P(A)P(B)$$

Example 4 (Coin Toss Independence) For 10 independent tosses, the probability of getting at least one head (T_i indicates that the *i*-th throw is tail up):

$$P(At \ least \ 1 \ H) = 1 - P(All \ T)$$
$$= 1 - P\left(\bigcap_{i=1}^{10} T_i\right)$$
$$= 1 - \prod_{i=1}^{10} P(T_i)$$
$$= 1 - \left(\frac{1}{2}\right)^{10} = \frac{1023}{1024}$$